Probabilistic Graphical Models

 Lecture 5

 Lecture 5}

Bayesian Networks

Conditioning can destroy independence

$$
P(X \mid Y)=P(X)
$$

Conditioning can destroy independence

Conditioning can destroy independence

Conditioning can destroy independence

Conditioning can destroy independence

Remember: faulty push-button

- x_{n} device on or off $(1 / 0)$ after n times pressing the button
- button works with probability p_{+}if the device is on, and with probability q_{+}if the device is off.

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{i} \in 0,1 \quad \text { (2m-1 parameters) }
$$

$p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=p\left(x_{1}\right) \cdots p\left(x_{m}\right) \quad$ (m parameters)

Remember: faulty push-button

Observation: $p\left(x_{\dagger} \mid x_{t-1}, x_{t-2}, \ldots, x_{2}, x_{1}\right)=p\left(x_{\dagger} \mid x_{t-1}\right)$

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=p\left(x_{m} \mid x_{1}, x_{2}, \ldots, x_{m-1}\right) p\left(x_{1}, x_{2}, \ldots, x_{m-1}\right)
$$

Remember: faulty push-button

Observation: $p\left(x_{\dagger} \mid x_{t-1}, x_{t-2}, \ldots, x_{2}, x_{1}\right)=p\left(x_{\dagger} \mid x_{t-1}\right)$

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{m}\right) & =p\left(x_{m} \mid x_{1}, x_{2}, \ldots, x_{m-1}\right) p\left(x_{1}, x_{2}, \ldots, x_{m-1}\right) \\
& =p\left(x_{m} \mid x_{m-1}\right) p\left(x_{1}, x_{2}, \ldots, x_{m-1}\right)
\end{aligned}
$$

Remember: faulty push-button

Observation: $p\left(x_{\dagger} \mid x_{t-1}, x_{t-2}, \ldots, x_{2}, x_{1}\right)=p\left(x_{\dagger} \mid x_{t-1}\right)$

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=p\left(x_{m} \mid x_{1}, x_{2}, \ldots, x_{m-1}\right) p\left(x_{1}, x_{2}, \ldots, x_{m-1}\right) \\
& \quad=p\left(x_{m} \mid x_{m-1}\right) p\left(x_{1}, x_{2}, \ldots, x_{m-1}\right) \\
& \quad=p\left(x_{m} \mid x_{m-1}\right) p\left(x_{m-1} \mid x_{1}, x_{2}, \ldots, x_{m-2}\right) p\left(x_{1}, x_{2}, \ldots, x_{m-2}\right)
\end{aligned}
$$

Remember: faulty push-button

Observation: $p\left(x_{\dagger} \mid x_{t-1}, x_{t-2}, \ldots, x_{2}, x_{1}\right)=p\left(x_{\dagger} \mid x_{t-1}\right)$

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\ldots=p\left(x_{m} \mid x_{m-1}\right) p\left(x_{1}, x_{2}, \ldots, x_{m-1}\right) \\
& \quad=p\left(x_{m} \mid x_{m-1}\right) p\left(x_{m-1} \mid x_{1}, x_{2}, \ldots, x_{m-2}\right) p\left(x_{1}, x_{2}, \ldots, x_{m-2}\right) \\
& \quad=p\left(x_{m} \mid x_{m-1}\right) p\left(x_{m-1} \mid x_{m-2}\right) p\left(x_{1}, x_{2}, \ldots, x_{m-2}\right)
\end{aligned}
$$

Remember: faulty push-button

Observation: $p\left(x_{\dagger} \mid x_{t-1}, x_{t-2}, \ldots, x_{2}, x_{1}\right)=p\left(x_{\dagger} \mid x_{t-1}\right)$

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\ldots \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \quad p\left(x_{3} \mid x_{2}\right) \ldots p\left(x_{m-1} \mid x_{m-2}\right) \quad p\left(x_{m} \mid x_{m-1}\right)
\end{aligned}
$$

Remember: faulty push-button

- fully dependent: $2^{m}-1$ free parameters (about 10^{30} for $n=100$)
- fully independent: m free parameters (100 for $n=100$)

$$
\circ p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)
$$

- conditionally independent: $2 m-1$ free parameters (199 for $n=100$)

$$
\circ p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \ldots p\left(x_{m} \mid x_{m-1}\right)
$$

Remember: faulty push-button

Given X_{t-1}, X_{t} is independent of X_{1}, \ldots, X_{t-2}

Directed graphs

Directed graphs

parent child

Directed graphs

Directed graphs

Directed graphs

Directed graphs

Directed Graphs \& Conditional Independence

given (immediate) parent, child is independent of all ancestors

Directed Graphs \& Conditional Independence

$$
P(C, R, W)=P(W \mid C, R) P(C, R)
$$

Directed Graphs \& Conditional Independence

$$
P(C, R, W)=P(W \mid C, R) P(C, R)=P(W \mid R) P(C, R)
$$

Directed Graphs \& Conditional Independence

$$
\begin{aligned}
P(C, R, W)=P(W \mid C, R) P(C, R) & =P(W \mid R) P(C, R) \\
& =P(W \mid R) P(R \mid C) P(C)
\end{aligned}
$$

Directed Graphs \& Conditional Independence

Directed Graphs \& Conditional Independence

given (immediate) parent, child is independent of?

Directed Graphs \& Conditional Independence

given (immediate) parent, child is independent of all other nodes?

Directed Graphs \& Conditional Independence

given (immediate) parent, child is independent of all other nodes?

Directed Graphs \& Conditional Independence

given (immediate) parent, child is independent of all other nodes?

Directed Graphs \& Conditional Independence

Directed Graphs \& Conditional Independence

Directed Graphs \& Conditional Independence

Markov Property
given (immediate) parents, child is independent

Directed Graphs \& Conditional Independence

Directed Graphs \& Conditional Independence

$P(O, R, S)=P(S \mid O, R) P(O) P(R)$
$P(R, S, W)=P(W \mid R) P(S \mid R) P(S)$

Directed Graphs \& Conditional Independence

Conditional Independence <-> Factorization

Conditional Independence <-> Factorization

Example: Markov Chain

$$
\begin{aligned}
& p\left(x_{t} \mid x_{t-1}, x_{t-2}, \ldots, x_{2}, x_{1}\right)=p\left(x_{t} \mid x_{t-1}\right) \\
& p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\ldots \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \ldots p\left(x_{m-1} \mid x_{m-2}\right) p\left(x_{m} \mid x_{m-1}\right)
\end{aligned}
$$

Example: Hidden Markov Models, Bayesian Filters

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, \ldots, x_{m}, 0_{1}, o_{2}, \ldots, o_{m}\right)=\ldots \\
& =p\left(x_{1}\right) \quad p\left(x_{2} \mid x_{1}\right) \quad p\left(x_{3} \mid x_{2}\right) \ldots p\left(x_{m-1} \mid x_{m-2}\right) \quad p\left(x_{m} \mid x_{m-1}\right) \\
& p\left(o_{1} \mid x_{1}\right) \quad p\left(o_{2} \mid x_{2}\right) \ldots p\left(o_{m-1} \mid x_{m-1}\right) \quad p\left(o_{m} \mid x_{m}\right)
\end{aligned}
$$

Example: Medical Diagnosis

Onisko, Agnieszka, et al. "A Bayesian network model for diagnosis of liver disorders.", 1999.

Example: Medical Diagnosis

Bayesian Nets and Causality

$$
P(C, R, W)=P(W \mid R) P(R \mid C) P(C)
$$

$$
P(C, R, W)=P(C \mid R, W) P(R, W)=P(C \mid R) P(R \mid W) P(W)
$$

Bayesian Nets and Causality

$$
P(C, R, W)=P(W \mid R) P(R \mid C) P(C)
$$

$$
P(C, R, W)=P(C \mid R, W) P(R, W)=P(C \mid R) P(R \mid W) P(W)
$$

Bayesian Nets and Causality

$$
\begin{aligned}
& P(C, R, W)=P(W \mid R) P(R \mid C) P(C) \\
& P(C, R, W)=P(C, W \mid R) P(R)=P(C \mid R) P(W \mid R) P(R)
\end{aligned}
$$

Bayesian Nets and Causality

K. N. Toosi

What about

